

Technical Guidance

V, 5b/aî•d^àčqt ¦kÁ Ô^}dæ¢æÁ/^&@ja3e;}æÁÖŠVÒÔPÁÙ]ÈÁÁ(ÈÈ č|ÈÁ2æà;¦^&:}æÆËHÉÄ,ÌËF€€Á,ãå}ã&æÁ c°|ÈÁIÁÍÌÁCÏÁ€€ÉÁæ¢ÁIIÁ,ÍÌÁCÏÁ€F ,, È≥|c^&@B&[{È;|Á₩A*|c^&@O^|c^&@B&[{È;|

SUMITOMO ELECTRIC

 $\mathsf{Saecad}[*\acute{A}][\acute{a}|_{ad}][\acute{A}\acute{A}^{+}], ~\breve{a}^{*}\acute{A}], ~\grave{E}\mathsf{aecad}[*\acute{a}; ad; ^{*}; ^{*}]$

Reference

R1 ~ R7

Steel and Non-Ferrous Metal Symbols ChartR	2
Hardness Scale Comparison Chart	٤4
Standard of Tapers ······R	25
Finished Surface Roughness ·······R	۶6
Tolerance Chart for Round Matching Parts	۲۲

■ Steel and Non-Ferrous Metal Symbols Chart

• Carbon Steels

JIS	AISI	DIN
S10C	1010	C10
S15C	1015	C15
S20C	1020	C22
S25C	1025	C25
S30C	1030	C30
S35C	1035	C35
S40C	1040	C40
S45C	1045	C45
S50C	1049	C50
S55C	1055	C55

Ni-Cr-Mo Steels

SNCM220	8620	_
SNCM240	8640	_
SNCM415	—	—
SNCM420	4320	—
SNCM439	4340	—
SNCM447	_	_

Cr Steels

SCr415	—	—
SCr420	_	_
SCr430	5130	34Cr4
SCr435	5135	37Cr4
SCr440	5140	41Cr4
SCr445	5147	—

Cr-Mo Steels

SCM415	_	—
SCM420	_	_
SCM430	4130	—
SCM435	4135	34CrMo4
SCM440	4140	42CrMo4
SCM445	4145	—

Mn Steels and Mn-Cr Steels for Structural Use

SMn420	1522	—
SMn433	1536	—
SMn438	1541	—
SMn443	1541	—
SMnC420	—	—
SMnC443	_	_

Cr-Mo Steels

SK1	W1-13	—
SK2	W1-11 ¹ /2	_
SK3	W1-10	C105W1
SK4	W1-9	_
SK5	W1-8	C80W1
SK6	W1-7	C80W1
SK7	—	C70W2

High Speed Steels

JIS	AISI	DIN
SKH2	T1	_
SKH3	T4	
SKH10	T15	
SKH51	M2	S6-5-2
SKH52	M3–1	_
SKH53	M3–2	S6-5-3
SKH54	M4	—
SKH56	M36	—

Alloy Tool Steels

SKS11	F2	_
SKS51	L6	—
SKS43	W2-9 1/2	—
SKS44	W2-8 1/2	—
SKD1	D3	X210Cr12
SKD11	D2	—

Grey Cast Iron

FC100	20	GG-10
FC150	25	GG-15
FC200	30	GG-20
FC250	35	GG-25
FC300	40	GG-30
FC350	50	GG-35

Nodular Cast Iron

FCD400	—	GGG-40
FCD450	60/40/ 8	GGG-40.3
FCD500	65/45/12	GGG-50
FCD600	80/55/06	GGG-60
FCD700	100/70/03	GGG-70

• Ferritic Stainless Steels

SUS405	AISI 405	DINX6CrAI13
SUS429	AISI 429	
SUS430	AISI 430	DINX6Cr17
SUS430F	AISI 430F	DINX12CrMoS17
SUS434	AISI 434	

Martensitic Stainless Steels

SUS403	AISI 403	
SUS410	AISI 410	DINX10Cr13
SUS416	AISI 416	
SUS420JI	AISI 420	DINX20Cr13
SUS420F	AISI 420F	
SUS431	AISI 431	DINX20CrNi172
SUS440A	AISI 440A	
SUS440B	AISI 440B	
SUS440C	AISI 440C	

• Austenitic Stainless Steels

JIS	AISI	DIN
SUS201	AISI 201	
SUS202	AISI 202	
SUS301	AISI 301	
SUS302	AISI 302	
SUS302B	AISI 302B	
SUS303	AISI 303	DINX10CrNiS189
SUS303Se	AISI 303Se	
SUS304	AISI 304	DINX5CrNi1810
SUS304L	AISI 304L	DINX2CrNi1911
SUS304NI	AISI 304N	
SUS305	AISI 305	DINX5CrNi1812
SUS308	AISI 308	
SUS309S	AISI 309S	
SUS310S	AISI 310S	
SUS316	AISI 316	DINX5CrNiMo17122
SUS316L	AISI 316L	DINX2CrNiMo17132
SUS316N	AISI 316N	
SUS317	AISI 317	
SUS317L	AISI 317L	DINAZCINIWO 18104
SUS321	AISI 321	
SUS347	AISI 347	DINX6CrNiNb1810
SUS384	AISI 384	

Heat Resisting Steels

SUH31		
SUH35		
SUH36		
SUH37		
SUH38		
SUH309	AISI 309	
SUH310	AISI 310	DINCrNi2520
SUH330	AISI 330	

• Ferritic Heat Resisting Steels

SUH21		DINCrAI1205
SUH409	AISI 409	DINX6CrTi12
SUH446	AISI 446	

Martensitic Heat Resisting Steels

SUH1	
SUH3	
SUH4	
SUH11	
SUH600	

Steel and Non-Ferrous Metal Symbols Chart Classifications and Symbols of Steels

Cla	SS	Material	Symbol	Symbol's Rationale
_		Rolled Steels for welded structures	SM	"M" for "Marine" - Usually used in welded marine structures
tura	els	Re-rolled Steels	SRB	"R" for "Re-rolled" and "B" for "Bar"
struc	Ste	Rolled Steels for general structures	SS	"S" for "Steel" and for "Structure"
0		Light gauge sections for general structures	SSC	"C" for "Cold"
Ste	el ets	Hot rolled mild steel sheets / plates in coil form	SPH	"P" for "Plate" and "H" for "Hot"
		Carbon steel tubes for piping	SGP	"GP" for "Gas Pipe"
		Carbon steel tubes for boiler and heat exchangers	STB	"T" for "Tube" and "B" for "Boiler"
		Seamless steel tubes for high pressure gas cylinders	STH	"H" for "High Pressure"
		Carbon steel tubes for general structures	STK	"K" for "Kozo"- Japanese word meaning "structure"
a d	2	Carbon steel tubes for machine structural uses	STKM	"M" for "Machine"
I I	-	Alloy steel tubes for structures	STKS	"S" for "Special"
Stee	5	Alloy steel tubes for pipings	STPA	"P" for "Piping" and "A" for "Alloy"
		Carbon steel tubes for pressure pipings	STPG	"G" for "General"
		Carbon steel tubes for high temperature pipings	STPT	"T" for " Temperatures"
		Carbon steel tubes for high pressure pipings	SPS	"S" after "SP" is abbreviation for "Special"
		Stainless steel tubes for pipings	SUS-TP	"T" for "Tube" and "P" fpr "Piping"
		Carbon steels for machine structural uses	SxxC	"C" for "Carbon"
he		Aluminium Chromium Molybdenum steels	SACM	"A" for "AI", "C" for "Cr" and "M" for "Mo"
achi	es	Chromium Molybdenum steels	SCM	"C" for "Cr" and "M" for "Mo"
or M	nctul	Chromium steels	SCr	"Cr" for "Chromium"
el fo	Str	Nickel Chromium steels	SNC	"N" for "Nickel" and "C" for "Chromium"
Ste		Nickel Chromium Molybdenium steels	SNCM	"M" for "Molybdenium"
		Manganese steels for structural use Manganese Chromium steels	SMn SMnC	"Mn" for "Manganese" "C" for "Chromium"
	s	Carbon tool steels	SK	"K" for "Kogu"- Japanese word meaning "tool"
	steel	Hollow drill steels	SKC	"C" for "Chisel"
		Alloy tool steel	SKS SKD SKT	"S" for "Special" "D" for "Die" "T" for "Tanzo"- Japanese word for "forging"
0	Ĕ	High speed tool steels	SKH	"H" for "High speed"
teel	els	Free cutting sulfuric steels	SUM	"M" for "Machinability"
ial S	s Ste	High Carbon Chromium bearing steels	SUJ	"J" for "Jikuuke"- Japanese word meaning "bearing"
pec	nles	Spring steels	SUP	"P" for "Spring"
S	Stai	Stainless steels	SUS	"S" after "SU" is abbreviation for "Stainless"
	stant	Heat-resistant steels	SUH	"U" for "Special Usage" and "H" for "Heat"
	-resis Is	Heat-resistant steel bars	SUHB	"B" for "Bar"
	Stee	Heat-resistant steel sheets	SUHP	"P" for "Plate"
		Carbon steel forgings for general use	SF	"F" for "Forging"
ged	els	Carbon steel booms and billets for forgings	SFB	"B" for "Billet"
For	Ste	Chromium Molybdenium steel forgings	SFCM	"C" for "Chromium" and "M" for "Molybdenium"
		Nickel Chromium Molybdenium steel forgings	SFNCM	"N" for "Nickel"
		Grey cast irons	FC	"F" for "Ferrous" and "C" for "Casting"
vu o	2	Spherical graphite / Ductile cast irons	FCD	"D" for "Ductile"
t Iro		Blackheart malleable cast irons	FCMB	"M" for "Malleable" and "B" for "Black"
Č.	5	Whiteheart malleable cast irons	FCMW	"W" for "White"
		Pearlite malleable cast irons	FCMP	"P" for "Pearlite"
U	,	Carbon cast steels	SC	"C" for "Casting"
loot.	202	Stainless cast steels	SCS	"S" for "Stainless"
to to		Heat-resistant cast steels	SCH	"H" for "Heat"
C	5	High Manganese cast steels	SCMnH	"Mn" for "Manganese" and "H" for "High"

• Non-Ferrous Metals

lass	Material	Symbol
ys		CxxxxP
· Allo	Copper and Copper alloys	CxxxxPP
pper	oneers, plates and sinps	CxxxxR
I Col		CxxxxBD
anc	Copper and Copper alloys	CxxxxBDS
pper	- Welded pipes and tubes	CxxxxBE
ů		CxxxxBF
ys	Aluminium and Al alloys	AxxxxP
u Allo	- Sheets, plates and strips	AxxxxPC
nium		AxxxxBE
Numi	Aluminium and Al alloys - Rods, bars and wires	AxxxxBD
and A		AxxxxW
m	Aluminium and Al alloys - Extruded shapes	AxxxxS
inimi	Aluminium and AL allow formings	AxxxxFD
Alt	Aluminium and Al alloy lorgings	AxxxxFH
Magnesium Alloys	Magnesium alloy sheets and plates	MP
ikel	Nickel-Copper alloy sheets and plates	NCuP
	Nickel-Copper alloy rods and bars	NCuB
Wrought Titanium	Titanium rods and bars	ТВ
	Brass castings	YBsCx
	High strength Brass castings	HBsCx
	Bronze castings	BCx
	Phosphorus Bronze castings	PCBx
	Aluminium Bronze castings	AIBCx
gs	Aluminium alloy castings	AC
astin	Magnesium alloy castings	MC
ő	Zinc alloy die castings	ZDCx
	Aluminium alloy die castings	ADC
	Magnesium alloy die castings	MDC
	White metals	WJ
	Aluminium alloy castings for bearings	AJ
	Copper-Lead alloy castings for bearings	KJ

■ Hardness Scale Comparision Chart

Brinell		Rockwell	Hardness	5			Traverse	Brinell		Rockwell	Hardness	5			Traverse
Hardness (HB) 3,000kgf	"A" Scale 60kgf (Brale)	"B" Scale 100kgf (¹ /10" Ball)	"C" Scale 150kgf (Brale)	"D" Scale 100kgf (Brale)	Vickers Hardness 50kgf	Shore Hardness	Rupture Strength (kg/mm ²)	Hardness (HB) 3,000kgf	"A" Scale 60kgf (Brale)	"B" Scale 100kgf (¹ /10" Ball)	"C" Scale 150kgf (Brale)	"D" Scale 100kgf (Brale)	Vickers Hardness 50kgf	Shore Hardness	Rupture Strength (kg/mm ²)
	85.6	_	68.0	76.9	940	97	_	321	67.5	(108.0)	34.3	50.1	339	47	108
	85.3	_	67.5	76.5	920	96		311	66.9	(107.5)	33.1	50.0	328	46	105
	85.0	_	67.0	76.1	900	95		302	66.3	(107.0)	32.1	49.3	319	45	103
767	84.7	_	66.4	75.7	880	93		293	65.7	(106.0)	30.9	48.3	309	43	99
757	84.4		65.9	75.3	860	92		285	65.3	(105.5)	29.9	47.6	301	—	97
745	84.1	_	65.3	74.8	840	91		277	64.6	(104.5)	28.8	46.7	292	41	94
733	83.8	_	64.7	74.3	820	90		269	64.1	(104.0)	27.6	45.9	284	40	91
722	83.4	_	64.0	73.8	800	88	_	262	63.6	(103.0)	26.6	45.0	276	39	89
712	—	_	_	—	_	—	—	255	63.0	(102.0)	25.4	44.2	269	38	86
710	83.0	_	63.3	73.3	780	87		248	62.5	(101.0)	24.2	43.2	261	37	84
698	82.6	_	62.5	72.6	760	86		241	61.8	100.0	22.8	42.0	253	36	82
684	82.2		61.8	72.1	740			235	61.4	99.0	21.7	41.4	247	35	80
682	82.2	_	61.7	72.0	737	84		229	60.8	98.2	20.5	40.5	241	34	78
670	81.8	_	61.0	71.5	720	83		223		97.3	(18.8)		234	—	
656	81.3	_	60.1	70.8	700	_	_	217	_	96.4	(17.5)	_	228	33	74
653	81.2	_	60.0	70.7	697	81	—	212	_	95.5	(16.0)	_	222		72
647	81.1		59.7	70.5	690			207	_	94.6	(15.2)		218	32	70
638	80.8	_	59.2	70.1	680	80	—	201	—	93.8	(13.8)	_	212	31	69
630	80.6	_	58.8	69.8	670			197	_	92.8	(12.7)		207	30	67
627	80.5	_	58.7	69.7	667	79	_	192	—	91.9	(11.5)		202	29	65
601	79.8	_	57.3	68.7	640	77	_	187	—	90.7	(10.0)	_	196		63
578	79.1	_	56.0	67.7	615	75	—	183	_	90.0	(9.0)	_	192	28	63
555	78.4	_	54.7	66.7	591	73	210	179	—	89.0	(8.0)	_	188	27	61
534	77.8	_	53.5	65.8	569	71	202	174	_	87.8	(6.4)		182		60
514	76.9	_	52.1	64.7	547	70	193	170	_	86.8	(5.4)	_	178	26	58
495	76.3	_	51.0	63.8	528	68	186	167	_	86.0	(4.4)	_	175	_	57
477	75.6	_	49.6	62.7	508	66	177	163	—	85.0	(3.3)	_	171	25	56
461	74.9	—	48.5	61.7	491	65	170	156	—	82.9	(0.9)	—	163	—	53
444	74.2	—	47.1	60.8	472	63	162	149	—	80.8	_	_	156	23	51
429	73.4	—	45.7	59.7	455	61	154	143	—	78.7	—	—	150	22	50
415	72.8	—	44.5	58.8	440	59	149	137	—	76.4	—	—	143	21	47
401	72.0	—	43.1	57.8	425	58	142	131	—	74.0	—	—	137	—	46
388	71.4	—	41.8	56.8	410	56	136	126	—	72.0	—	_	132	20	44
375	70.6	_	40.4	55.7	396	54	129	121	_	69.8			127	19	42
363	70.0	_	39.1	54.6	383	52	124	116	_	67.6		_	122	18	41
352	69.3	(110.0)	37.9	53.8	372	51	120	111		65.7	<u> </u>		117	15	39
341	68.7	(109.0)	36.6	52.8	360	50	115	1) Figures	within the	() are not	commonly	used			
331	68.1	(108.5)	35.5	51.9	350	48	112	Z) RUCKWE		D SUDIES U	unoco a ula		6		

Reference

Standard of Tapers

Morse Taper

Morse			Taper	r Taper Tang												
Taper Number	Ta	iper*	Angle (α°)	D	d	D1 ⁺ (Estimated)	d1+ (Estimated)	ℓ₁ (Max)	ℓ₂ (Max)	d₂ (Max)	b	C (Max)	e (Max)	R	r	Shape
0	<u>1</u> 19.212	0.05205	1°29'27"	9.045	3	9.2	6.1	56.5	59.5	6.0	3.9	6.5	10.5	4	1	
1	$\frac{1}{20.047}$	0.04988	1°25'43"	12.065	3.5	12.2	9.0	62.0	65.5	8.7	5.2	8.5	13.5	5	1.2	
2	$\frac{1}{20.020}$	0.04995	1°25'50"	17.780	5	18.0	14.0	75.0	80.0	13.5	6.3	10	16	6	1.6	
3	1 19.922	0.05020	1°26'16"	23.825	5	24.1	19.1	94.0	99.0	18.5	7.9	13	20	7	2	Eig 1
4	$\frac{1}{19.245}$	0.05194	1°29'15"	31.267	6.5	31.6	25.2	117.5	124.0	24.5	11.9	16	24	8	2.5	FIG I
5	<u>1</u> 19.002	0.05263	1°30'26"	44.399	6.5	44.7	36.5	149.5	156.0	35.7	15.9	19	29	10	3	
6	<u>1</u> 19.180	0.05214	1°29'36"	63.348	8	63.8	52.4	210.0	218.0	51.0	19	27	40	13	4	
7	$\frac{1}{10.221}$	0.05200	1°29'22"	83.058	10	83.6	68.2	286.0	296.0	66.8	28.6	35	54	19	5	

Morse			Taper			Та	per			Thread					
Taper Number	Ta	aper*	Angle (α°)	D	d	D1 ⁺ (Estimated)	d1+ (Estimated)	ℓ₁ (Max)	<i>€</i> 2 (Max)	d₂ (Max)	d₃	K (Max)	t (Max)	r	Shape
0	1 19.212	0.05205	1°29'27"	9.045	3	9.2	6.4	50	53	6	_	—	4	0.2	
1	$\frac{1}{20.047}$	0.04988	1°25'43"	12.065	3.5	12.2	9.4	53.5	57	9	M 6	16	5	0.2	
2	$\frac{1}{20.020}$	0.04995	1°25'50"	17.780	5	18.0	14.6	64	69	14	M10	24	5	0.2	
3	$\frac{1}{19.922}$	0.05020	1°26'16"	23.825	5	24.1	19.8	81	86	19	M12	28	7	0.6	Eig 2
4	$\frac{1}{19.254}$	0.05194	1°29'15"	31.267	6.5	31.6	25.9	102.5	109	25	M16	32	9	1	FIG Z
5	1 19.002	0.05263	1°30'26"	44.399	6.5	44.7	37.6	129.5	136	35.7	M20	40	9	2.5	
6	$\frac{1}{19.180}$	0.05214	1°29'36"	63.348	8	63.8	53.9	182	190	51	M24	50	12	4	
7	$\frac{1}{19.231}$	0.05200	1°29'22"	80.058	10	86.6	70.0	250	260	65	M33	80	18.5	5	

* The fractional values are the taper standards.

 $^{\scriptscriptstyle +}$ Diameters (D1) and (d1) are calculated from the values of (D) and other values of the taper. (Values are rounded up to one decimal place)

Bottle Grip Taper

Bottle Grip Taper

Bottle Grip Laper (Units in mm)																					
Topor No	р ,	Da	+.	+a	to	+.	+-	d1	da	da	d.	1	10	10	1.		b.	t	Refe	rence	Chopo
тарег но.	D1	D2	11	12	13	L 4	15	(Standard)	U2	U3	U4	L	C 2	C 3	64	g	D1	17	d5	l 1	Shape
BT40	63	53	25	10	16.6	2	2	44.45	19	17	14	65.4	30	8	21	M16	16.1	22.6	25.3	70	
BT45	85	73	30	12	21.2	3	3	57.15	23	21	17.5	82.8	38	9	26	M20	19.3	29.1	33.1	70	
BT50	100	85	35	15	23.2	3	3	69.85	27	25	21	101.8	45	11	31	M24	25.7	35.4	40.1	90	FIG I
BT60	155	135	45	20	28.2	3	3	107.95	33	31	26.5	161.8	56	12	34	M30	25.7	60.1	60.7	110	

• American Standard Taper (National Taper)

 America 	American Standard Taper (National Taper) (Units in mm)														
Taper No.	Nominal Diameter	D	C	1 1	L	l 1	l 2	l 3	g	а	t	b	Shape		
30	1 ¹ /4"	31.750	17.40	- 0.29 - 0.36	70	20	24	50	1/2"	1.6	15.9	16			
40	1 ³ /4"	44.450	25.32	- 0.30 - 0.384	95	25	30	60	⁵ /8"	1.6	15.9	22.5	F in 0		
50	2 ³ /4"	69.850	39.60	- 0.31 - 0.41	130	25	45	90	1"	3.2	25.4	35	Fig 2		
60	4 ¹ /4"	107.950	60.20	- 0.34 - 0.46	210	45	56	110	1 ¹ /4"	3.2	25.4	60			

• American Standard Taper (National Taper)

Fig 2 l l2 l а 7/24 Taper

고
e
e
Ге
ñ
C

Finished Surface Roughness Types of Surface Roughness Measurements

Types	Symbol	Method of Determination	Descriptive Figure
Maximum Height	Ry	This is the value (expressed in µm) measured from the deepest valley to the highest peak of the reference line, ℓ , extracted from the profile. (Disregard unusually high peaks and deep valleys as they are considered as flaws.)	
Ten-point Mean Roughness	Rz	From the profile, extract a portion to be the reference line, ℓ . Select the 5 highest peak and 5 deepest valleys. Measure the distance between the two lines and express it in µm.	
Calculated Roughness	Ra	This method is to obtain a center line between the peaks and valleys within the reference line, ℓ . Fold along the center line to superimpose the valleys against the peaks. (Shaded portions with dashed outline on the right figure). Take the total shaded area and divided it by ℓ in µm.	Roughness Curve f

Designated values of the above types of surface roughness, standard reference length values and the triangular symbol classifications are shown on the table on the right.

Designated values for Ry	Designated values for Rz	Designated values for Ra	Standard reference length values, <i>ℓ</i> (mm)	Triangular Symbols
(0.05S) 0.1S	(0.05Z) 0.1Z	(0.013a) 0.025a		
0.2S	0.2Z	0.05a	_	\bigtriangledown
0.45	0.4Z	0.10a	0.25	
1.6S	1.6Z	0.40a		
3.2S	3.2Z 6.3Z	0.80a 1.6a	0.8	\bigtriangledown
12.5S	12.5Z	3.2a		
(18S) 25S	(18Z) 25Z	6.3a	2.5	$\nabla \nabla$
(35S)	(35Z)			
50S (70S)	50Z (70Z)	12.5a 25a	—	\bigtriangledown
100S	100Z			
(140S) 200S	(140Z) 2007			
(280S)	(280Z)	(50a) (100a)	_	—
400S (560S)	400Z (560Z)	(,		
Remarks:	The designate	ed values in the vise stated.	ne brackets do	not apply

Reference

Tolerance Chart for Round Matching Parts Tolerance for Shank Sizes

Diamete	r, D(mm)							То	leran	ce Cla	ass (µr	n)									
>D	≤D	b9	c9	d8	d9	e7	e8	e9	f6	f7	f8	g5	g6	h5	h6	h7	h8	h9			
-	3	-140 -165	-60 -85	-20 -34	-20 -45	-14 -24	-14 -28	-14 -39	-6 -12	-6 -16	-6 -20	-2 -6	-2 -8	0 4	0 –6	0 -10	0 -14	0 -25			
3	6	-140 -170	-70 -100	-30 -48	-30 -60	-20 -32	-20 -38	-20 -50	-10 -18	-10 -22	-10 -28	-4 -9	-4 -12	0 -5	0 8	0 –12	0 –18	0 -30			
6	10	-150 -186	-80 -116	-40 -62	-40 -76	-25 -40	-25 -47	-25 -61	-13 -22	-13 -28	-13 -35	-5 -11	-5 -14	0 6	0 _9	0 -15	0 -22	0 -36			
10	14	-150	-95	-50	-50	-32	-32	-32	-16	-16	-16	-6	-6	0	0	0	0	0			
14	18		-138	-77	-93	-50	-59	-75	-27	-34	-43	-14	-17	-8	-11	-18	-27	-43			
18	24	-160	-110	-65	-65	-40	-40	-40	-20	-20	-20	-7	-7	0	0	0	0	0			
24	30	212	-162	-98	-117	-61	-73	-92	-33	-41	-53	-16	-20	-9	-13	-21	-33	-52			
30	40	-170 -232	-120 -182	-80	-80	-50	-50	-50	-25	-25	-25	-9	-9	0	0	0	0	0			
40	50	-180 -242	-130 -192	-119	-119	-119	-119	-142	-75	-89	-112	-41	-50	-64	-20	-25	-11	-16	-25	-39	-62
50	65	-190 -264	-140 -214	-110	-100	-60	-60	-60	-30	-30	-30	-10	-10	0	0	0	0	0			
65	80	-200 -274	-150 -224	-146	-174	-90	-106	-134	-49	-60	-76	-23	-29	-13	-19	-30	-46	-74			
80	100	-220 -307	-170 -257	-120	-120	-72	-72	-72	-36	-36	-36	-12	-12	0	0	0	0	0			
100	120	-240 -327	-180 -267	-174	-207	-107	-126	-159	-58	-71	-90	-27	-34	-15	-22	-35	-54	-87			
120	140	-260 -360	-200 -300																		
140	160	-280 -380	-210 -310	-145 -208	-145 -245	-85 -125	-85 -148	-85 -185	-43 -68	-43 -83	-43 -106	-14 -32	-14 -39	0 -18	0 -25	0 -40	0 -63	0 -100			
160	180	-310 -410	-230 -330																		
180	200	-340 -455	-240 -355																		
200	225	-380 -495	-260 -375	-170 -242	-170 -285	-100 -146	-100 -172	-100 -215	-50 -79	-50 -96	-50 -122	-15 -35	-15 -44	0 -20	0 -29	0 -46	0 -72	0 –115			
225	250	-420 -535	-280 -395																		

• Tolerance for Hole Sizes

Diamete	r, D(mm)								To	lerand	ce Cla	ass (µ	ım)							
>D	≤D	B10	C9	C10	D8	D9	D10	E7	E8	E9	F6	F7	F8	G6	G7	H6	H7	H8	H9	H10
_	3	+180 +140	+85 +60	+100 +60	+34 +20	+45 +20	+60 +20	+24 +14	+28 +14	+39 +14	+12 +6	+16 +6	+20 +6	+8 +2	+12 +2	+6	+10 0	+14 0	+25 0	+40
3	6	+188	+100	+118 +70	+48 +30	+60 +30	+78 +30	+32 +20	+38 +20	+50 +20	+18 +10	+22 +10	+28 +10	+12 +4	+16 +4	+8	+12	+18 0	+30	+48
6	10	+208	+116 +80	+138 +80	+62 +40	+76 +40	+98 +40	+40 +25	+47 +25	+61 +25	+22	+28 +13	+35 +13	+14 +5	+20 +5	+9	+15	+22	+36	+58
10	14	+220	+138	+165	+77	+93	+120	+50	+59	+75	+27	+34	+43	+17	+24	+11	+18	+27	+43	+70
14	18	+150	+95	+95	+50	+50	+50	+32	+32	+32	+16	+16	+16	+6	+6	0	Ō	0	0	Ő
18	24	+244	+162	+194	+98	+117	+149	+61	+73	+92	+33	+41	+53	+20	+28	+13	+21	+33	+52	+84
24	30	+160	+110	+110	+65	+65	+65	+40	+40	+40	+20	+20	+20	+7	+7	0	0	0	0	0
30	40	+270 +170	+182 +120	+220 +120	+119	+142	+180	+75	+89	+112	+41	+50	+64	+25	+34	+16	+25	+39	+62	+100
40	50	+280 +180	+192 +130	+230 +130	+80	+80	+80	+50	+50	+50	+25	+25	5 +25	+9	+9	0	0	0	0	0
50	65	+310 +190	+214 +140	+260 +140	+146	+174	+220	+90	+106	+134	+49	+60	+76	+29	+40	+19	+30	+46	+74	+120
65	80	+320 +200	+224 +150	+270 +150	+146	+100	+146	+60	+60	+60	+30	+30	+30	+10	+10	0	0	0	0	0
80	100	+360 +220	+257 +170	+310 +170	+174	+207	+260	+107	+126	+159	+58	+71	+90	+34	+47	+22	+35	+54	+87	+140
100	120	+380 +240	+267 +180	+320 +180	+120	+120	+120	+72	+72	+72	+36	+36	+36	+12	+12	0	0	0	0	0
120	140	+420 +260	+300 +200	+360 +200																
140	160	+440 +280	+310 +210	+370 +210	+208	+245 +145	+205 +145	+125 +85	+148 +85	+185 +85	+68 +43	+83 +43	+106 +43	+39 +14	+54 +14	+25	+40 0	+63 0	+100 0	+160 0
160	180	+470 +310	+330 +230	+390 +230	1															
180	200	+525 +340	+355 +240	+425 +240																
200	225	+565 +380	+375 +260	+445 +260	+242 +170	+285 +170	+355 +170	+146 +100	+172 +100	+215 +100	+79 +50	+96 +50	+122 +50	+44 +15	+61 +15	+29	+46 0	+72 0	+115 0	+185
225	250	+605 +420	+395 +280	+465 +280																

Reference

Turning Guidance

T1 ~ T8

…T2
T3
•••T4
···T5
···T6
T7
···T8

Selecting Cutting Conditions & Cutting Resistance

- < Selection Of Cutting Conditions >
- Cutting Conditions & Their Influence

Item	Influencing Matters
Speed	Work Efficiency, Tool Life, Cutting Power Consumption & Surface Roughness
Feed	Work Efficiency, Chip Control, Tool Life, Cutting Power Consumption & Surface Roughness
Depth of Cut	Working Efficiency, Chip Control, Cutting Power Consumption & Dimensional Accuracy

 Selecting Cutting Parameters

Calculatio	n of Cuttin	g Speed, T	able Feed	& Cutting 1	Tim	е					
Calculating	g Rotating s	speed given	the Cutting		· /	──∧					
$N = \frac{1000 \times V}{\pi \times D}$ $N : Spindle Speed (rpm)$ $V : Cutting Speed (m/min)$ $D : Work Diameter (mm)$ $\pi : 3.14$ If extracting the Cutting Speed from the Rotating Speed:							z ()				
V = _	π x D x N 1000	Th de		f 	·ρ						
Calculating	g the actual	Table Feed	d (F)			\sim					
F	=fxN	Wh	ere F is in r	nm/min		N: Work Rotating speed (rom)					
Finally, Ca	Iculating the	actual Cut	ting Time (T) in mins.		V : Cutti	ng speed	((m/min)		
$T = \frac{L}{F}$ Where L is the total cutting length						f : Feed d : Deptl D: Work	rate n of cut piece diame	((eter (mm/rev) mm) mm)		
Tool Mate	rials and C	ed Ratio	Speed Rat	io Related	to Surfac	e and Vork					
HSS	Carbide	Coated	Cermet	Ceramic		Turned	Casting &	Continuous	Interuppted		
1 3~6 5~15 5~10 10~25				10~25		Surface	Forging Faces	Machining	Machining		
				1	0.70	1	0.70				

- < Cutting Resistance >
- Three Component Forces Of Cutting Resistance
- Factors Affecting Cutting Resistance
- Determination Of Cutting Resistance
- Determination Of Power Requirement

Influences of Cutting Edge Geometries

 Relation Between Rake Angle & Cutting Resistance

Relation Between Rake Angle (α°) and Cutting Resistance

 Influence Of The Approach Angle :

*Relation To The Undeformed Chip Thickness. *Chip Thickness & Specific Cutting Resistance. *Approach Angle & 3 Component Forces.

Influence Of the Nose Radius :

*Nose Radius & 3 Component Forces *Nose Radius & Strength

Turning

General Guide Lines for Turning Tools

edge slightly.

■ Tool Life

Wear Process Curve

• Life Curve (V-T Lines)

Tool Life Equation

Tool Life Equation (Taylor's Equation)
VT ⁿ = C
V : Cutting speed T : Tool Life n & C : Constants Determined by the Work Material, Tool Material, Tool Design, etc.

Alternative Tool Life Criteria

- 1. When surface finish deteriorates unacceptably.
- 2. When a fixed amount of tool wear is reached, (see the right hand table)
- 3. When work piece dimension is not tolerable.
- 4. When power consumption reaches a limit.
- 5. Sparking or chip discolouration and disfiguration.
- 6. Cutting Time or Number of components produced

Width of flank wear for general life determination for cemented carbides.

Width of Wear (mm)	Applications
0.2	Finish Cutting of Nonferrous Alloys, Fine and Light Cut, etc.
0.4	Cutting of Special Steels and The Like.
0.7	Normal Cutting of Cast Irons, Steels, etc.
1~ 1.25	Rough Cutting of Common Cast Irons.

Turning

■ Tool Failures and Their Counter-Measures

• Characteristic Of Tool Failure

	No.	Failure		Cause
	1~5	Flank Wear		Due to the scratching effect of hard grains contained within the work material.
	6	Chipping	Physical	Fine breakages caused by high pressure cutting, chatter and vibration, etc.
Ken 1	7	Partial Fracture		Due to mechanical impact when an excessive force is applied to the cutting edge.
	8	Crater Wear		Due to a combination of galling and welding between the chips and the top rake.
	9	Plastic Deformation		The cutting edge is deformed due to its softening at high temperature.
	10	Thermal Crack	Chemical	Thermal fatigue from the heating and cooling cycle during interrupted cutting.
	11	Built-up Edge		The deposition and adhesion of the hardened work material on the cutting edge.

• Failure & Countermeasures

	Failure		Basic Counter-measures	Application Example				
	Excessive Flank Wear	Tool Material	- Use a more wear-resistant	Recommended Ir	nsert Grade:			
	/		grade		Steel	Cast Iron		
			Carbide> Coated Carbide Cermet	Finishing	T110A (Cermet)	BN250 (CBN)		
		Cutting	- Decrease Speed	Rough	AC2000 (Alumina Coated)	AC500G (Alumina Coated) NS260C (Ceramic)		
	\checkmark	Conditions						
	Excessive Crater Wear	Tool Material	- Use a crater-resistant grade.	Recommended Ir	nsert Grade:			
	/		Carbide —> Coated		Steel	Cast Iron		
			(K> M> P) Cermet	Finishing	T110A (Cermet)	BN250 (CBN)		
		Tool design	- Enlarge the rake angle	Rough	AC2000	AC500G (Alumina		
		Cutting	- Decrease speed, reduce the	Machining	(Alumina Coated)	Coated)		
	\checkmark	Conditions	depth of cut and feedrate.	●Use MU Type C	hip Breaker			
	Cutting Edge Chipping	Tool Material	- Use tougher grades.	Recommended Ir	nsert Grade:			
ure	0 0 11 0	1001 Matorial	If carbides: P10 -> P20 -> P30		Steel	Cast Iron		
ge Fail		Tool design	K01 -> K10 -> K20 - If built-up edge occurs, change to a	Finishing	T1200A (Cermet)	AC500G (Coated)		
Ed			less susceptible grade eg. cermets.	Rough	AC3000	AC500G (Alumina		
	\mathbb{K}^{2}		- Reinforce the cutting edge eg. Honing.	Machining	(Alumina Coated)	Coated)		
		Cutting	- Increase speed (If there is edge build-			NS260 (Ceramic)		
		Conditions	up).	Edge Treatment : All of our inserts have been honed				
	•				in advance.			
	Partial Fracture Of	Tool Material	- Use tougher grades.	Recommended Ir	nsert Grade:			
	Cutting Edges		For carbides: P10 -> P20 -> P30		Steel	Cast Iron		
		Tool design	K01 -> K10 -> K20 - Use the holder with a larger approach	Rough Machining	AC2000 /AC3000	AC500G (Coated)		
		_	angle.			NS260C (Ceramic)		
			- Use a holder with a larger shank size.	Insert : Use UX	Type Breaker			
		Cutting Conditions	- Reduce the depth of cut and feedrate.	Holder : Use Le	ever-lock Type			
	\checkmark							
	Built-up Edge	Tool Material	 Change to a grade which is more adhesion resistant. 	Recommended In	isert Grades : Cerr	nets		
		Cutting Conditions	Increase the cutting speed and feed.Use cutting fluids.					
	Plastic Deformation	Tool Material	- Change to high thermal resistant	Recommended In	sert Grades : AC2	000 or AC3000		
		Cutting Conditions	grades. - Reduce the cutting speed and feed.					

Turning

Analysis of Chip Control on Turning

• Classification Of Chip Formation & Their Influences

Shape Categories for Chips							
Depth of Cut	А	В	С	D	E		
Excess				ununu u v v.e.v.a.v. u u u u	******		
Slight		Incrused Andrasa	WINNI VVN VVN	3300 0 × 10 0 × 1 2 1 × 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Curled Length	No Curling	Over 50 mm	Up to and including 50 mm 1 to 5 Turns	Below 1 Turn	Half Turn		
Remarks	Continuous Random Shape	Continuous Regular Shape	Good	Good	Excessively Broken Chip		

Influence Of Chip Shapes

Influence	Chip Shape	Туре А	Туре В	Туре С	Type D	Type E
Tool	Wear Resistance	0	0	0	0	0
life	Chipping	Х	х	0	0	Х
	Finishod	0	0	0	0	х
Quality	Surface	0	0	0	0	х
	ounace	0	0	0	0	Х
Transfor	Machining	х	0	0	0	0
TIANSIEI	Part Chips	Х	Х	0	0	0
Power Consumption Cutting		0	0	0	0	Х
Resistan	ce Safety	Х	0	0	0	Х
Overall Evaluation		Х	0	Excellent	Excellent	Х

O: Superior X: Inferior

Good chip control : Types C and D

• Unsatisfactory chip control: -

Type A : Twines around the tool and work material, causes the machine to stop, quality impairment on the machined surface or problems in safety. Type B : Causes performance reduction of the chip's automatic transfer system or even edge chipping.

Type E : Causes such troubles as spray of chips, unsatisfactory finished surface due to chattering, chipping of the cutting edges or increase in cutting resistance and heat generation.

• Factors To Determine Chip Formation

- Factors: Outlet Angle and Cutting Direction

Earmation Of Chins

- Chip Forms According to The Combination of Factors			
Outlet Angle	If n = 0	lf n ≠ 0	

Upward Only	Cylindrical Form	
Sideways Only	Washer-Like Form	Spiral Form
Upward + Sideways	Conical Form	

Types Of Chip Breaking Figure of Chip Breaking Туре Meanings Cause by the effect of the upward curl only, Work if the rake is too small. Obstructive Chip broken because it struck against the Туре work end face. Scroll Type Caused by the upward curling force when the rake angle is large. Rolls in without breaking after striking against the work end face. - Removed spirally by the mixing of upward and Flank Obstructive sideways curls. Strikes against the Туре flank and breaks. Occurs if the sideways Side Curl curling factor is superior. Туре Strikes against the flank of the tool and breaks.

_				
	Flow Type	Shear Type	Tear Type	Crack Type
Form	Workpiece	Workpiece	Workpiece	Workpiece
Condition	Continuous Chip and satisfactory surface finish	aA chip is sliced -off at the shear angle	Chip with the appearance of being torn off. The workpiece surface is damaged.	The swarf cracks before reaching cutting edge,which then separates it from parent work piece body.
Examples	Normal Cutting for Steels, Light Alloys, and Alloyed Cast Irons	Low speed cutting for Steels and Stainless Steels	Fine Cutting for Steels and Cast Irons at Excessively Low Speed	Cutting for General Purpose Cast Irons, Rocks, and Carbonous Materials
Influence	Bigs Large < Work Deformation> Small Large < Rake Angle> Small Slight < Depth of cut> Excess High < Cutting Speed> Low		> Small > Small -> Excess -> Low	

urning

Turning Guidance

■ Factors on Chip Control & Their Influences

Milling Guidance

M1 ~ M7

Milling Cutter Nomenclature & Clamping Method ·····	M2
Influences of Cutting Edge Geometries	M3
Surface Finish	M4
Cutter Size & Number of Teeth	M5
Power Requirement, Cutting Conditions & Grades Selection ····	M6
Trouble Shooting Guide for Milling	M7

Milling Cutter Nomenclature & Clamping Method

Cutter Parts Name

Clamping Method for Each Cutter Size

(Cutter Body	Ada	ptor	
External Diameter	Internal Diameter	Chart	Туре	Figure
D (mm)	d (mm)			(See diagram below)
80	25.4	Chart 1	Arbor	Туре А
100	31.75	Chart 2	Arbor	Туре А
125	38.1	Chart 2	Arbor	Туре А
160	50.8	Chart 2	Arbor	Type A
200	47.625	Chart 3	Centering Plug	Туре В
250	47.625	Chart 3	Centering Plug	Туре В
315	47.625	Chart 4	Centering Plug	Type B

(D: External Diameter, D_1 : External Diameter of Body, D_2 : External Diameter of Boss, d: Hole Diameter, F: Height, E: Thickness, a: Width of Key Way, b: Depth of Key Way)

Influences of Cutting Edge Geometries

Various Cutting Angles & Their Functions

\square	Description	Code	Functions	Influences
1. 2.	Axial Rake Angle Radial Rake Angle	A.R R.R	Controls chip removal direction, effects adhesion of the chips and thrust force etc.	Rake angles can vary from positive to negative (large to small) with typical combinations of positive and negative, positive and positive or negative and negative configurations.
3.	Approach Angle	A.A	Controls chip thickness and chip removal direction	The effect of the large approach angle is to reduce the chip thickness and cutting force.
4.	True Rake Angle	T.A	Effective Rake Angle	 With a positive (large) angle, cutting ability and adhesion resistance are improved but the strength of the cutting edge is weakened. With negative (small) angle, the strength of the cutting edge is improved but chips will tend to adhere more easily.
5.	Inclination Angle	I.A	Controls chip removal direction	- With a positive (large) angle, the chip removal is satisfactory with less cutting resistance but the strength of the corner is weaker.
6.	Wiper Flat Clearance Angle	F.A	Controls surface finish	A smaller clearance angle will produce a better surface finish.
7.	Clearance Angle		Controls edge strength, tool life and chattering, etc	

Ready Chart for True Rake Angles

Example in using the above chart : Given: A(Axial Rake Angle) = $+10^{\circ}$ R(Radial Rake Angle) = -30° C(Approach Angle) = 60° Solution: **T** (True Rake Angle) taken from the chart is = -8°

Formula: tan T = tan R.cos C + tan A.sin C

• Combinations Of Principal Angles & Their Features

Ready Chart for Inclination Angles

Formula: tan I = tan A.cos C - tan R.sin C

	Negative - Positive Cutter	Double - Positive Cutter	Double - Negative Cutter
The effects of the various angle configurations with relation to chip formation and chip removal.	A.A(30~45*) A.R Positive	A.A(15~30')	A. A (15~30°)
A.R : Axial Rake angle R.R : Radial Rake angle A.A : Approach angle : Chip removal direction : Direction of cutter rotation	R.R. Negative	R. R. Positive	R.R. Negative
Advantage	Best configuration for chip removal with good cutting action	Good Cutting Action	Economical using double sided inserts.
Disadvantage	Only single-sided inserts are available	Less Cutting Edge Strength Only single-sided inserts are available.	Poor Cutting Action
Applications	Suitable for Steels, Cast Irons Stainless Steels, Die Steels, etc.	General Milling of Steels Low rigidity workpiece	Milling of Cast Iron
Typical Cutter (Sample)	UFO Type	DPG Type	DNF Type
Chip forms Workpiece: SCM435 Condition : V= 130m/min f = 0.23 mm/tooth d = 3 mm		660	

■ Surface Finish

• Accuracy on Run-Out of teeth and Surface Finish

The cutting edges of a cutter with multiple cutting positions will inevitably have some slight deviations. This is defined as the accuracy or runout of the teeth of which there are two kinds namely: the Axial Run-out of end cutting edges and Radial Run-out of peripheral cutting edges. Of these two the axial run-out of end cutting edges in particular is an influential factor of surface roughness.

Theoretica

Roughness

a: Facial Bun-Ou

- Comparison With Theoretical and Actual Roughness When Cutting With A General Cutter (Example):

Roughness

R max

 (μm)

Roughness

R max

 (μm)

.....

-0

40 60 80

Theoretical Roughness

Actual Roughness

Axial Run-Out of End Cutting Edge (µm)

150

150

m/mir

- Workpiece: Carbon Steel - Cutter dia. :160 mm No - Depth of Cut : 1mm

0.2

0.1

No. of Teeth: 6

a. Axial Run-Out of The End Cutting Edges

A difference between the maximum and minimum cutting edge positions projected in the axial direction when rotating with reference at the cutter center.

b. Radial Run-Out of The Peripheral Cutting Edges

A difference between the maximum and minimum cutting edge positions projected in the radial direction, when rotating with reference at the cutter center.

Improving Run-Out of teeth:

- 1. Improve the dimensional tolerance of the inserts.
- 2. Improve the dimensional accuracy of the cutter body and its various components.
- Accuracy of the inserts: (Units: mm) в A т F 0.013 0.005 0.025 С 0.025 0.013 0.025 Κ 0.075 0.013 0.025

Feed per One Revolution

f: Feed per Tooth

a: Axial Run-Out of End Cutting Edge

Improving Surface Finish: Milling inserts with wiper flat

- Projecting one of the inserts more than the others so as to act as a wiper.
- Inserts with Linear Wiper Flat (Face Angle: approx. 15'~1°) - Inserts with Curved Wiper Flat
- (Curvature is about 500 mm in radius)
- 2. Built-in Wiper Insert System A method in which 1 or 2 inserts with a smooth curved edge (wiper inserts) are projected fractionally more than the others so that the working surfaces are wiped flat. (UFO Type, DNF Type, etc.)

3. Where No Wiper Inserts Are Available

Milling

Reposition inserts to achieve highest 2, 3 or 4 inserts equispaced around the cutter body so that each such high inserts can precede whatever number of lower inserts. Total feedrate/tooth should not bemore than 80% of wiper flat width.

Cutter Size & Number of Teeth

Selection of Cutter Size

1. Engage Angle

Workpiece	Optimum Engage Angle	Ratio between the diameter of the cutter and the width of the workpiece		
Steel	+20 ~ -10	3:2		
Cast Iron	Below +50	5:4		
Light Alloy	Below +40	5:3		
The above recommendations are				

based on a ϕ 150mm cutter of on a 100mm wide steel block.

2. Mechanical Rigidity

Machine Horsepower	Adaptive Cutter Size
3~5 PS	80 ~ 100 mm
7.5~10 PS	100 ~ 160 mm
15~30 PS	160 ~ 200 mm

3. Processing Time

It is more efficient to select a correct cutter diameter as time can be wasted waiting for the cutter to run off the workpiece if too large a diameter is used.

60° 80

Selecting The Number of Teeth

1. Number of Simultaneous Cutting Edges

- The minimum number of cutting edges simultaneously engaged in the workpiece should be about 2~4 teeth.
- Less than this requirement will cause the work to shift due to impacts which may lead to insert failure or more inferior surface roughness.
- More than the requirement may cause deformation of the work, chattering and vibration.

2. Work Materials

Workpiece	Number of Teeth	Cutter example and the number of teeth
Steel	Dx1~1.5	UFO4160 (8 teeth)
Cast Iron	Dx2-1~Dx4	DHGF4160 (11 teeth)
Light Alloy	Dx1+α	APG4160 (8 teeth)

D: Nominal diameter of the cutter

3. Other Conditions

Number Of Teeth

Steel

Application

- Considerations of Work Materials:

- Maximize the number of teeth for high feed milling of Cast Irons. (Rigidity of the machine and clamping must be sufficient.)
- For steels, the number of teeth should be reduced but feed per tooth should be increased. (Wide chip pockets and rigid cutter body are necessary)
- Improve the efficiency of milling non-ferrous alloys by increasing the speed.
- Cutte UFO DHGF APG DPV (Z) ominal Size 100mm (4") 5 7 5 10 160mm (6") 8 11 8 18 10 10 24 200mm (8") 15 315mm(12") 14 23 16 36

- Examples Of The Combination Of Typical Cutters &

Cast Iron Light Alloy High Feed

For narrow workpieces, increase the number of teeth so that at least one tooth is always cutting.
 When using unsteady machines and workpieces, the number of teeth should be reduced.

Power Requirement, Cutting Conditions & Grades Selection

• Power & Cutting Resistance

4. Comparison of Cutting Resistance Among Typical SEC-ACE MILLS

	Edge angle			Cutting Resistance (kg)					Work : Alloy Steel (HB250)		
Cutter Type	A.R.	R.R.	A.A	C) 50	0 1	100		Machine	: Machining Center (15 HP)	
UFO	15º	-4º	45°		<u> </u>		९٩	Totał Force	O a ra alitti a ra		
APG	18º	-2°	25°		Back	Feed	Principal	₹	Condition	f = 0.3mm/tooth	
DPG	8º	0°	15°		↓ Toite	b Force	Force			d = 3mm	

Calculation Method of Cutting Conditions

Selection of Insert Grade

- 1. Requirements:
- Good Wear Resistant eg. Coated grade
- Good Toughness eg. Tough carbide grade
- Good Resistance to Thermal cracks eg. Tough carbide grade
- Adhesion resistant eg. Cermet grade
- 2. Recommended Insert Grade Depends on Work Material

Milling

Trouble Shooting Guide for Milling Suggested Remedies for Common Faults

Trouble			Basic Remedies	Proven Remedies					
	Excessive Flank Wear	Insert	- Use more wear-resistant Grade.	- Recommended Insert Grade					
		Grade		Steel Cast Iron Light Allov					
			Carbide F30> F20> Coated	Finishing T250A (Cermet) G10E (Carbide) DA2200 (SumiDia)					
	\sim 1	0							
		Conditions	- Decrease speed and increase feed.	Rougning AC230 (Coated) G10E (Carbide) EH20Z (Coated)					
			the second sector as slates to made	Pacammandad Insert Crada					
	Excessive Crater wear	Grade	- Use more crater-resistant grade.	- Recommended Insert Grade					
			Carbide (K> M> P)> Cermet	Steel Cast Iron Light Alloy					
			Coated	Finishing T250A (Cermet) G10E (Carbide) DA2200(SumiDia)					
		Cutting	- Decrease speed and reduce tahe	Roughing AC230 (Coated) AC211 (Carbide) EH20Z (Coated)					
		Conditions	depth of cut and feed.						
	Cutting Edge Chipping	Insert Grade	- Use tougher grade.	- Recommended Insert Grade :					
0			Corbido P30> P20> P30	Steel Cast Iron					
ilur	aligned by		K01> K10> K20	Roughing A30N (Carbide) G10E (Carbide)					
Fa			- Use negative-positive edge type cutter						
dge			with a large approach angle.						
Ш		Insert Design	- Reinforce the cutting edges (by honing).	 Recommended Cutter : SEC-UFO Type 					
		Cutting	- Reduce feed						
	Dortial Fracture of	Conditions		Decommonded Incert Credeo					
	Cutting Edges	Grade	grade which is more adhesion resistant.	- Recommended insert Glades .					
			- Thermal cracking, use a more thermal	Finishing T3504 (Carmat) C105 (Carbida)					
			resistant grade.	Pourshing Access (Center) Access (Center)					
		Insert Design	- Use negative-positive (or negative) edge	Roughing AC325 (Coated) AC2310 (Coated) EH202 (Coated)					
			type cutter with a large approach angle.	- Recommended Cutters : SEC-UFO Type					
			particular)						
		Cutting Conditions	- Select conditions suitable to						
			applications.						
	Unsatisfactory	Insert	- Use a more adhesion resistant grade.	- Recommended Cutters & Insert Grades :					
	Surface Finish	Tool	Carbide> Cermet	Steel Cast Iron Light Alloy					
		Design	- Improve axial run-out of the cutting	General Cutter UFO Type DHGF Type APG Type					
			edges.	Purpose Insert T250A (Cermet) G10E (Carbide) EH20Z					
			with proper setting of the inserts)	For Cutter PF Type PF Type APG Type (With Wiper Chip)					
			- Use wiper insert.	Only Insert TIZA (Cermet) Ceramic Insert DA200 (SumiDia)					
			- Use a special purpose cutter for						
		Cutting	finishing.						
		Conditions	- increase speed.						
ω	Chattering	Tool Design	- Use positive cutter with a large rake	- Recommended Cutters :					
her		Doolgii	angle.	For Stool : LIFO Type, EHC Type					
þ		Cutting	- Use irregular pitched cutter.	For Steel : OFO Type, EHG Type For Light Alloys : APG Type For Cast Iron : DHG Type					
		Conditions	- Improve clamping of the workpiece						
		Others	and cutter.	,					
	Unsatisfactory Chip	Tool	- Use Negative (R.R)-Positive (A.R)	- Recommended Cutters : UFO Type, EHG Type					
	Control	Design	Cutter						
			- Reduce the number of teeth						
		Tool							
	Edge Chipping on	Design	- Enlarge the approach angle	- Recommended Cutters : UFO Type, EHG Type					
	vvorkpiece	Cutting	- Reduce feed						
		Conditions	i						
	Burr on Workpiece	Tool Desian	- Use a positive cutter	- Recommended Cutters : UFO Type, EHG Type					
		Cutting	- Increase speed						
		Conditions							

Milling

Endmilling Guidance

E1 ~ E10

Endmill Nomenclature	···E2
Sumitomo's Endmills & Cutting Conditions…	…E3
Cutting Profile & Performance	…E4
Cutting Profile & Accuracy	…E5
Performance Characteristics	…Е6
Cutting Fluid	…Е7
Features and Performance of PVD Coated Carbide Endmills…	···E8
High Speed Endmilling	…E9
Trouble Shooting Guide for Endmilling	•E10

Endmill Nomenclature

• Technical Terms

Edge Shapes

■ Sumitomo's Endmills & Cutting Conditions

Sumitomo's Endmills

- Solid Endmills 1. Spiral Endmill - SSM,HHM,HHMR,SSHE 1 2 3 4 6 6 $\widehat{\mathcal{O}}$ 8 Ô ന 2. High Helix Endmill - HSM 3. Ballnose Endmill - SSB,SHB 4. Cermet Ballnose Endmill - SFB-T 5. Cermet Endmill - SFM-T 6. Tapered Endmill - STRM 7. Tapered Endmill - STM 8. Brazed Endmill - MES 9. Endmill for Graphite (Ballnose) - GBM 10. Endmill for Graphite (Square) - GSM - Indexable Type 1. SEC-Repeater Wavemill - WRM 2. SEC-Wavemill - WEM ß Ē Â 3. SEC-Multi Mill - UFO 4. SEC-Wavemill - WMM 5. SEC-Bore Endmill - HKE 6. SEC-ACE Ballnose Endmill - RBM 6000 7. SEC-Wavemill - WBMR 8. SEC-Wavemill - WBMR 9. SEC Helical Endmill - CMS 10. SEC Chamfering Endmill - SCP

- Calculation Of Cutting Conditions for Normal Endmills
- 1. Cutting Conditions

2. Feed

- 3. Depth of Cut
- Calculation Of Cutting Conditions for Ballnose Endmills
- 1. Boundary of Cutting
- 2. Cutting Speed

3. Feed

Cutting Profile & Performance

- Cutting Directions
- 1. Up cut
- 2. Down cut

Chip Control

\square		SSM2080	SSM4080	KSM2080	SFM2080	HSM3080	
Milling	Up Cut	11		11		/	Work: Pre-hardened Steel (HRC40) Cutting Conditions - Corner milling : V = 25 m/min f = 0.16 mm/rev
Corner	Down Cut	11	11	11		1	Ad = 12 mm Rd = 0.8 mm
	Grooving	11	10	11	11	>	Cutting Conditions - Grooving: V = 25 m/min f = 0.05 mm/rev Ad = 8 mm Rd = 8 mm

Ŷ

0.03 mm/rev

Up cutting

Up Cut

Down cutting face

Down Cut

Cutting Profile & Accuracy

Precision

 Relation Between Cutting Condition and Bending of Machined Surface

Performance Characteristics

Number of Teeth

Derfermen De	No. of teet		
Performance Pa	arameters	2	4
Twist Rigidity		0	
Bending Rigio	dity	0	
Roughness		0	
Undulation		\bigcirc	
Bending of Machi Surface	\bigcirc		
Fixed Feed	Breakage Resistance	\bigcirc	
(mm/tooth)	Wear Resistance	0	
Fixed Efficiency	Breakage Resistance	0	
T IXED EITICIEITCY	Wear Resistance	0	
Finishing		\bigcirc	
Light Cutting		\bigcirc	
Heavy Cutting	\bigcirc		
	Performance Pa Twist Rigidity Bending Rigid Roughness Undulation Bending of Machi Surface Fixed Feed (mm/tooth) Fixed Efficiency Finishing Light Cutting Heavy Cutting	Performance Parameters Twist Rigidity Bending Rigidity Roughness Undulation Bending of Machined Surface Fixed Feed (mm/tooth) Fixed Efficiency Fixed Efficiency Finishing Light Cutting Heavy Cutting	No. of Performance Parameters 2 Twist Rigidity Bending Rigidity Roughness Undulation Bending of Machined Surface Fixed Feed (mm/tooth) Breakage Resistance Fixed Efficiency Breakage Resistance Wear Resistance Fixed Efficiency Breakage Resistance Finishing Light Cutting Heavy Cutting

Performance		No. of	teeth
Condition	Performance Parameters	2	4
Chin Control	Chip Packing		0
	Chip Removal		0
	Counter Boring		0
Boring	Surface Roughness		0
	Hole Expansion		0
	Chip Removal		0
Grooving	Groove Expansion		0
	Key Way Grooving		0
Corpering	Surface Roughness	0	
Comening	Chattering		0
	Alloy Steels	\bigcirc	
Work Material	Cast Irons	0	
work wateria	Non-ferrous alloys		0
l	Hard-To-Cut Materials	\bigcirc	\bigcirc

• Helix Angles

	Cutting Resistance			Surface Roughness			Tool Life			
Helix Angle	Torque	Bending Resistance	Vertical Force	Roughness	Undulation	Bending of Machined Surface	Flank Wear	Peripheral Wear	Breakage	Catalogue No.
30°			0		\bigcirc	0		0		SSM 2000 / SSM 4000
60°			\triangle		\triangle	0	\bigcirc		\triangle	HSM 3000

●: Excellent ◯: Good △: Fair

 Helix Angle and Cutting Force

\square	X (Feed Force)	Y (Back Force)	Z (Vertical Force)	
- 40 - 30 - 30 - 20 - 20 - 10 - 0	SSM2080 SSM4080 HSM3080	SSM2080 SSM4080 HSM3080	SSM2080 SSM4080 HSM3080	Work: Pre-hardened steel Tool : SSM2080 (30°)

• Flute Length

Depth of cut Endmill	0.1	0.2	0.3	0.4	0.5	Work: S50C (HB230)
SSM4050 Flute Length 12 mm						V = 30 m/min f = 0.02 mm/rev Down cut
LSM4050 Flute Length 18 mm						Cutting plane Pare plane
ELSM4050 Flute Length 30 mm					Cannot be machined	Depth of cut

Cutting Fluid

Features

(Lubricity	Adhesion Resistance	Infiltration	Cooling Effect	Rust Prevention	Smoking	Odour
Mater Oslahla	Emulsion type	0	\bigtriangleup	0		\triangle		0
Cutting Fluid	Soluble type	\triangle	\bigtriangleup	0		\bigtriangleup		
3	Solution type	×	\triangle	\triangle		\triangle		
Non-water Soluble	Chlorinated oil				0	0	\triangle	
Cutting Fluid	Sulfo-chlorinated oil				0	0	\triangle	

Cutting Fluid and Tool Life

Test Example:

Non-coated endmills are not practical to use at V = 30 m/min because of chipping.
 Better performance with non-water soluble fluid as cutting speed increases.
 A more practical cutting speed is 50 m/min but it has a rather limited application range.

2) Die-mould Steel (HRC 48)

■ Features and Performance of PVD Coated Carbide Endmills

• Wide Range of Cutting Speeds

Excellent Surface Roughness

Optimum Machining for Hard-to-cut Materials

High Speed Endmilling

Trouble Shooting Guide for Endmilling Standard Steps for Common Problems

	Trouble		Basic Remedies	Details
	Excessive wear on periphery and end cutting edges	sive wear on ery and end g edges Cutting - Decrease spe conditions - Examine cutting		 For solid endmills - change from uncoated to coated endmills eg. SSM-ZX type Cutting fluids - change from water soluble type to non-water soluble type.
je Failure	Chipping of the cutting edges	Cutting conditions	Reduce feedrate Use down-cut milling Reduce the depth-of-cut	
Ē		Machine and others	 Stronger clamping of the workpiece Reduce the amount of overhang 	
	Tool breakage while cutting	Cutting conditions Tool	 Increase speed Decrease feedrate Decrease depth-of-cut Shorten the length of cut 	 If the spindle speed is not fast enough, use an arbor speed inducer
		Tool	- Use materials that have a high	
ish	Poor surface finish: - Surface roughness	Tool	 Young's Modulus Enlarge the helix angle Increase the number of flutes Shorten the length of cut 	 Use High-Helix Spiral Endmills (HSM type) Change the endmill from 2 teeth to 4 teeth (ex. SSM2000 type change to SSM4000 type)
surface fin	- Surface squareness	Cutting conditions	 Reduce feedrate Reduce the depth-of-cut Use up-cut milling 	
ctory		Others	- Prevent build-up on the cutting edge	
Unsatisfa	Chattering marks	Cutting conditions	 Decrease speed Use down-cut milling Use cutting fluid 	
		Others	- Ensure that both the workpiece and tool are properly secured	- Check the clearances between the chuck, collet and endmill
Others	Packing of chips	Tool Cutting conditions	 Reduce the number of flutes Reduce feedrate Reduce the depth of cut 	- Change the endmill from 4 teeth to 2 teeth (ex. SSM4000 type change to SSM2000 type)

Drilling Guidance

D1 ~ D11

Twist Drill Nomenclature	D2
Comparison Table of Each Multidrill Type $^{}$	D2
Varieties of Classification for Drills	…D4
Machine Rigidity	D5
Clamping Selection	…D6
Oil Coolant ·····	…D7
Hole Accuracy	D8
Relationship Between Hole Depth & Cutting Resistance \cdots	D9
Remarks on Using Longer Drills (KDS-DA, KDS-FA) \cdots	·D10
Trouble Shooting Guide & Remedies for Twist Drills \cdots	·D11

Drilling

Twist Drill Nomenclature

Comparison Table of Each Multidrill Type

Drilling

Drilling

D3

■ Varieties of Classification for Drills

1. Classification According to	No	Type	Descriptions	Illustrations
Туре		Solid Drill	A drill which is wholly composed of the	
			same material eg. hard alloys.	(1)
	2	Solid Carbide-End	A drill which has a carbide portion of a defined length brazed to its tip.	
	3	Tipped Drill	A drill that has brazed carbide tips.	(3)
	4	Throw-Away Tipped Drill	A drill which uses throw-away inserts which are mechanically clamped on its tip.	
2. Classification According to Shank Configurations	5	Straight Shank Drill	A drill with a cylindrical formed shank. (There are also straight shank drills with	(5)
	6	Taper Shank Drill	tennon or threaded drivers.) A drill with a Morse taper shank. (There are also threaded morse taper shank drills.)	
3. Classification According to The Length	7	Stub Drill	A drill with a much shorter overall length as compared to a normal drill of the same diameter.	(7)
	8	Regular Length Drill	A drill with a standard market length.	(8)
			compared to a normal drill of the same diameter.	(9)
4. Classification According to The Helix Angle	10	Twist Drill	A drill with left or right handed flutes	(10)
			twisting along the length of its body.	
	11	Straight Fluted Drill	A drill with no twists in its flutes.	
5. Classification According to Profiles	12	Oil Hole Drill	A drill with through-tool coolant holes.	
Tronico	13	Sub-land Step Drill	A drill with two diameter sizes with an individual flute for each diameter size.	
	14	Double Margin Drill	A drill with two fluted lands.	(14)
	15	Flat Drill	A straight fluted drill with a plate-like cutting portion.	
	16	Step Drill	A drill designed to perform step drilling or to produce a countersunk hole.	(16)
6. Classification According to Functions and Applications	17	Core Drill	A drill which has no center point cutting but is used for finishing or reaming of pre- drilled holes.	(17)
	18	Center Drill	A drill is used for making pilot holes.	(18)
	19	Gun Drill	A long drill used on a special machine for drilling of very long holes.	(19)
	20	Spade Drill	A straight fluted drill having a plate-liked formed cutting portion, usually mechanically held infixed to the body.	(20)
	21	Pivot Drill	A drill with its diameter size different from its shank diameter.	(21)
	22	Micro Drill	A small sized drill used to drill circuit boards for electronic equipment.	(22)
7. Classification According to Materials of The Cutting Portion	•	High Speed Steel Drill	A drill made wholly out of H.S.S. material.	eg. SKH9, SKH55, M7, M33, etc
	•	Carbide Drill	A drill made wholly out of Carbide material.	eg. Carbides - K10 & K20, ultra- corpuscle alloys etc.
	•	Coated Drill	The above-mentioned drills with coating	eg. Corresponding to our Multidrills
	•	Others	A drill with either a sintered CBN or PCD drill tip.	eg. Corresponding to our SumiDia drills.

Drilling

Machine Rigidity

- Machine Capacity
- 1. Power Consumption & Thrust Formula for Multi Drills

Carbide Drills are used for high efficiency cutting. In order to realize their capabilities fully, use rigid and powerful machines.

When using above chart, please consider the motor power and machine rigidity especially during high efficiency drilling (high thrust) where it requires high rigidity of the spindle. Although it is important to consider the horsepower requirements, the structure and of the main spindle axle is also an important factor for considerations. In general machining centres, rigidity of the machine's configuration are as specified: 1) BT50 > BT45 > BT40 2) single axle>plural axle

• High Rigidity • Low Rigidity • Low Rigidity

2. Power Consumption &Thrust Formula for WDS-Drill

Spindle

As high efficiency drilling enhances a large horizontal cutting force in addition to large thrust and torque forces, it is therefore essential to have a rigid and stable clamping.

Clamping Selection

1) External Coolant

1) Deflection Accuracy 2) Rigid Clamping Both are very important factors for carbide drilling, it is therefore important to select a suitable clamping system as recommended below. Spindle Head Tapered Straight Straight with Tang Straight with Flat face Drill Shank 1 لي Taper Holder QC Type Taper Holder Tapered Milling Collet Drill Side Lock Holder Sleeve Chuck Holder Chuck Sleeve Holder stub holder ρ Chucking 000 ģ . Î 6 ⋬ Brazed Carbide- \bigcirc × \bigcirc Tipped Drill MultiDrill × × × × (Type K,P,G) Drill MultiDrill × × \bigcirc × \bigcirc (Type A,FA) Economical × × × × \bigcirc \bigcirc Solid Carbide Drill ○:Excellent :Good X :Poor

2) Internal Coolant

3) Correct Operation

Drilling

Oil Coolant

1. Selection Of Oil

To maximise the hole accuracy and tool life, the most suitable cutting fluid for **MULTI DRILLS** is non-water soluble (neat) cutting oil but one must be careful about the development of smoke and fire. Please supply in adequate volume. Neat oil is not suitable at high speeds. (V>40 m/min).

At high speeds, the most suitable cutting fluid is water-emulsifiable, high density oil. (7-10 times dilution.)

Soluble oil and Chemical fluids are not recommended.

2. Features

		Lubricity	Adhesion Resistance	Permeability	Cooling Capability	Rust Resistance	Smoke Retardant	Odor
Water Soluble	Emulsifiable Oil	0	\square	0		\triangle		\bigcirc
	Soluble Oil	\triangle	\triangle	0		\triangle		
Oil	Solution Oil	×	\triangle	\triangle		\triangle		
Non Water	Chlorinated Oil				0	0	\triangle	
Soluble Oil	Sulfo-Chlorinated Oil				0	0	\triangle	

3. Oil Supply

Internal Supply	For Milling Application	Special Purpose Machine Machining Centre	Internal Supply Holder With Rotating Oil Supply	Higher oil pressure and large amounts of oil are desirable. Min. pressure is 3~5 kg/cm ² . Min. volume is 2~5 l/min.
	Lathes		Holder	
External	Vertic	al		Horizontal
	correct Correct 7////////////////////////////////////	Correct	Ideal 	Inefficient

4. Examples

Work	Drill	Machine Conditions		Results	Remarks
Brake Hose Part Low Carbon Steel (He150~160)	MDS110SK Dia. 11mm	NC Lathe V=66m/min f=0.35mm/rev	Life Efficiency	Multi Drill V=66 f=0.35 V=41 HSS coated f=0.25 5,000 pcs./reg (55m) 750 pcs./reg (13.5m)	-Productivity was 2.2 times higher -Tool life was 6.7 times higher - Good hole accuracy which can omit reaming process
Construction Machine Part Low Carbon Steel (Hs150)	KDS240LA Dia. 24mm	Machining Centre V=65m/min f=0.35mm/rev	Life	Solution Oil 170 holes Emulsifiable Oil 270 holes	-1.6 times tool life by using emulsifiable oil
Machine Part Alloy Steel (Hs280)	KDS194LA Dia. 19.4mm	NC Lathe V=60m/min f=0.25mm/rev	Life	Dilution Rate 30 Times 100 Hole 10 Times 185 Hole	-10 times dilution is good. -5 times may be too dense

Drilling

Drilling Guidance

■ Hole Accuracy

1) Selection of the Drill Diameter

The chart below shows the actual expansion of the hole diameter for various types of materials, please consider these expansion when selecting a drill.

Drill	Soft Steel	General Steel Alloy Steel	Ductile Cast Iron	Cast Iron	Aluminium						
MDS Type	+20 ~ +50	0 ~ +30	0 ~ +40	0 ~ +40	-10 ~ +40						
KDS Type	+20 ~ +70	+30 ~ +80	+10 ~ +50	+10 ~ +50	0 ~ +40						
Example : If you want to drill a hole of diameter 13.1 ~ 13.15 on soft steel, the drill diameter to be selected should be ϕ 13.10 (MDS131MP)											

2) Run-Out of the Drill

3) Deflection Accuracy (Tool rotating)

The run-out of the drill after Hole Oversize Draft Force chucking should be within 0.03mm. Run Out (mm) 10 (kg) 0.05 (mm) The big run-out will cause oversized holes and when used on a 0.005 machine with low rigidity, it may cause drill breakage. 0.09 MDS120MK Carbon Steel (HB230) V=50m/min, f=0.3mm/rev, depth=38mm

4) Deflection Accuracy (Work rotating)

On a lathe, the run-out at both positions (A) and (B) should be within 0.03mm.

5) Uneven Work Surfaces

Drilling

If the surface of the workpiece is not flat at the entrance and exit points, the feedrate should be reduced to about 0.1~0.5 mm/rev.

Relationship Between Hole Depth & Cutting Resistance

• Control the Cutting Resistance

Chip removal is very difficult in one-pass deep hole drilling. Clogged chips in the flute makes cutting forces higher and it may lead to drill breakage.

Solution by Flute Design

Step-feeding has two objectives: 1) Chip formation and 2) chip removal.

Low speed drilling by HSS, solid carbide or twist drills requires step-feeding [Type 2] to ease chip removal. Conversely, high speed drilling with MultiDrills requires step-feeding [Type 1] to assist in chip formation.

- Remarks on Using Longer Drills (KDS-DA, KDS-FA)
- Problem

High speed cutting with longer sized drills leads to the deflection of the drill, bending of drilled hole and drill breakage.

Two Solutions

Trouble Shooting Guide & Remedies for Twist Drills Standard Step for Common Problems

\int	Trouble		Basic Remedies	Proven Remedies
	Excessive Wear of the Cutting Edge	Tool Conditions Cutting Fluid	 Enlarge the clearance angle. Use higher wear-resisting tool material. Set the correct cutting speeds. Use more efficient cutting fluids with high lubricity. 	 Clearance angle of 10°~12° for steels Change to PVD-coated MultiDrills Change to emlusifiable type coolant, higher viscosity for heavy duty drilling
	Chisel Point Chipping	Tool Conditions	 Machine correct the web thinning and honing. Shorten the overall length of drill and overhang. Reduce the feedrate (more on entry). 	- Water-soluble fluid for heavy duty drilling (Emulsifiable Type)
		Cutting Fluid	- Change to correct cutting fluid.	
ill Failures	Chipping of Peripheral Cutting Edge	Tool Conditions Cutting Fluid	 Increase edge honing. Decrease cutting speed. Reduce feed during entrance or break-through. Change to correct cutting fluid with a minimum of 5 hore pressure. 	- Water-soluble fluid for heavy duty drilling (Emulsifiable Type)
ā				
	Deposition, Wear of Margin Part	Tool Cutting Fluid Others	 Slightly enlarge the back taper on diameter. Narrow the width of margin Supply cutting fluids sufficiently minimum of 5 bars Early regrinding Direction of coolant supply should be correct 	- Water-soluble fluid for heavy duty drilling (Emulsifiable Type)
	Fracture of Drill Body Conditions Cutting Fluid Others		 Use a more rigid drill. Slightly enlarge the back taper on diameter and narrow the margin width. Decrease the cutting speed and feedrate. Increase the coolant flow rate to min 5 bars. Avoid packing of chips by pecking. Increase rigidity of the machine. Increase clamping rigidity of the work. 	- Use MultiDrill K Types - Increase the number of pecks per cycle
g Accuracies	Excessive Over- Sized Holes	Tool Conditions Cutting Fluid	 Correctly grind the point configuration. Decrease the cutting speed and feed. Reduce the oil pressure and flow rate. 	 Eliminate the eccentricity of the chisel edge Minimise the difference between lip heights (within 0.02 mm)
actory Working	Poor Surface Finish	Tool Conditions Cutting Fluid	 Increase rigidity of the machine. Increase the cutting speed when built-up edge occurs. Adjust the feedrate proportionally. Supply sufficient cutting fluids. 	- Use Multi Drill K Type - Use sulfurised oil as the cutting fluid
Unsatisfa	Drill Wondering	Tool	 Eliminate the eccentricity of right and left cutting lips. Correct deflection and run-out of the drill 	 Minimise the difference between lip heights (within 0.02 mm) Use the guide bush (not suitable for MultiDrills)
sfactory Chip	Packing of Chips	Conditions Cutting Fluid	 Introduce peck-drilling. Decrease speed and increase feedrate. If through-tool coolant system is used, increase the coolant pressure and flow rate. 	
Unsati Contro	Stringy Swarf	Conditions	 Decrease the cutting speed. Increase feedrate. 	
Others	Chattering During Drilling	Tool	 Reduce the clearance angle. Use a more rigid drill. 	- Change to MultiDrill K Type

Exotic Materials Guidance

X1 ~ X8

Insert Grades & Cutting Conditions for Exotic Materials ····	·X2
Application Examples	·X4
Machinability of Hard to Cut Materials	X6
Machining of Stainless Steel	·X7
Cutting Quench-Hardened Steels	·X8

■ Insert Grades & Cutting Conditions for Exotic Materials

Turning [— Cutting Speed (V) : m/min, — Feed rate (f) : mm/rev]								
Wc	ork Materials	Gen	eral N	lachining and Roughing			Finishing	
Туре	Examples	Recommended Insert Grades	V f		Recommended Insert Grades	V f		
Stainless	SUS410	AC3000 AC304 EH10Z (Coated)	V f	100 <u>180</u> 0.20.6	T110A (Cermet)	V f	120 250 0. <u>1 0</u> .2	
Steels	SUS304	AC3000 AC304 EH10Z (Coated)	V f	80 160 0. <u>2 0</u> .6	EH20Z (Coated)	V f	100 200 0.10.2	
	Inconel 718	EH20Z (Coated)	V f	3 <u>0</u> 50 0. <u>05</u> 0.25	BN600 (CBN)	V f	50 <u>200</u> 0.0 <u>50</u> .15	
Nickel	Inconel 718	EH10Z (Coated)	V f	20_40 0.1_0.3	BN600 (CBN)	V f	50 <u>2</u> 00 0.05 <u>0.1</u> 5	
Alloys	Hastelloy B	EH10Z (Coated)	V f	30 <u>5</u> 0 0. <u>1</u> 0.3	BN600 (CBN)	V f	50 <u>150</u> 0.0 <u>5</u> 0.15	
	Nimonic 80A	EH10Z (Coated)	V f	3 <u>0 5</u> 0 0. <u>1 0.</u> 3	BN600 (CBN)	V f	50 <u>15</u> 0 0.0 <u>5</u> 0.15	
Cobalt Allo	ys	EH10Z (Coated)	V f	2060 0 <u>.1_0</u> .2	BN600 (CBN)	V f	100 200 0.0 <u>5 0</u> .15	
Ferrite Alloy	/S	AC2000 (Coated)	V f	3060 0.10.3	BN600 (CBN)	V f	100 200 0.05 0.15	
Pure Titani	um	EH10Z (Coated)	V f	30_60 0.1_0.3	BN600 (CBN)	V f	100 <u>2</u> 00 0.1 <u>0</u> .2	
Titanium Alloys	Ti-6AI-4V	EH10Z (Coated)	V f	2 <u>050</u> 0 <u>.10.</u> 3	BN600 (CBN)	V f	100_200 0. <u>05_0.</u> 15	
Stellite		EH10Z (Coated)	V f	2 <u>0</u> 60 0. <u>10.</u> 2	BN600 (CBN)	V f	70 150 0.05 0.15	
Shape Mer	nory Alloy	EH10Z (Coated)	V f	2050 0. <u>05</u> 0.15	BN600 (CBN)	V f	50 100 0.0 <u>5 0</u> .15	
Heat Resis Alloys (Valv	tant Sintered ve Seat Ring)	EH10Z (Coated)	V f	3070 0. <u>050.</u> 15	BNX4 (CBN)	V f	50 150 0.0 <u>5 0</u> .15	
Quench Hardened Steels	Hardened Blister Steels (Over HRC55)	EH10Z (Coated)	V f	50 150 0. <u>05 0</u> .1	BNX20 BN250 BN300 (CBN)	V f	50 <u>1</u> 50 0.05 <u>0</u> .2	
High Manganese Steels	SCMnH3	NB90S (Ceramics)	V f	50 <u>150</u> 0 <u>.1</u> 0.3	BNX20 BN250 BN300 (CBN)	V f	100 <u>300</u> 0.02 <u>0</u> .2	
Carbide	85WC-15Co	EH10Z (Coated)	V f	10300.050.2	DA90 (PCD)	V f	10 <u>30</u> 0. <u>05</u> 0.2	
FRP	CFRP Carbon Fiber Reinforced Plastic	EH10Z (Coated)	V f	-	DA150 (PCD)	V f	1500.2	

Exotic Mat.

Mil	lling
	<u> </u>

 Milling 		Cutti	ng Speed (V) : m/min,	—— F	eed rate (f)	: mm/t]		
Work N	/laterials	Recommen	ded Tools		Reco	ommended	Cutting	Conditions	
Turne	Evenuela	Outton Turne	Oradaa	V	20	50	100	200	400
туре	Example	Cutter Type	Grades	f	0.02	0.05	0.1	0,2	0.4
Stainless Steels	Hot Rolled Stainless Steel Strips (AISI)	UFO-Type	T130Z (Coated Cermet) AC325 (Coated Carbide)	V f				160 220 0. <u>15</u>	0.4
Nickel Base Heat Resistant & Corrosion Resistant Materials	Inconel 718	GRC-Type	EH20(Z) (K10 Coated Carbide)	V f	20	50	0.1	0.2	
Titanium Alloys	Ti6AI-4V	GRC-Type	EH20(Z) (K10 Coated Carbide)	V f	20	50	0.1	0.2	
Quench Hardened Steels	SKD61	Sumiboron Facemill BNM-Type	BN250 (CBN)	V f		0.05	100	200 0.15	
High Manganese Steels	SCMnH3	UFO-Type	A30N (P30 Carbide)	V f		40	80	0. <u>15</u> 0.	3

• EndMilling

	utting	Speed (v):m/r	nın, —	– ⊦eed	rate (f) :	mm/rev]			
Work N	<i>Materials</i>	Recommen	ded Tools		Re	ecomm	ended C	Cutting (Condition	IS
Туре	Example	Endmill Type	Grades	V	20		50	100	200	400
Stainless Steels	Hot Rolled Stainless Steel Strips (AISI)	Coated Solid Spiral Endmill SSM-ZX Type	Coated Carbide	f V f	0.02 0. <u>015</u>	30	0.05 70 0.05	0,1	0,2	0.4
Nickel Base Heat Resistant & Corrision Resistant Materials	Inconel 718	High Lead Coated Endmill HSM-ZX Type	Coated Carbide	V f	20 0. <u>015</u>	2	40 0.05			
Titanium Alloys	Ti6Al-4V	Coated Spiral Endmill SSM-ZX Type	Coated Carbide	V f	0. <u>015</u>	30	70. 0.05	I		
Quench Hardened Steels	Alloy Tool Steels (AISI)	Sumiboron Endmill BNES-Type BNBS-Type	BNX3 (CBN)	V f	0.015	30 C). <u>0</u> 5		150	

Drilling

 Drilling 	[C	Cutting Speed (V) : m/min, Feed rate (f) : mm/rev										
Work Materials		Recommended Tools			Recommended Cutting Conditions							
Туре	Example		Cradaa	V 20 50 100 200	400							
	Example	ыш туре	Grades	f	0.02	0.05	0,1	0.2	0.4			
Stainless	Stainless Steel	MultiDrill HK-Type	ZX Coated	V	20	70) 0.1	C).3			
Steels	Wires (AISI)	MultiDrill K-Type MultiDrill A-Type	ZX Coated Coated	f	15 30		0.1		<u>).</u> 3			

Exotic Mat.

Application ExamplesTurning

		Work	Tool	Cutting Conditions			
	Application	1) Part Name 2) Materials	3) Tool Name 4) Grade	V = Speed f = Feed d = Depth of Cut	Results		
Stainless Steels		1) Valve Parts 2) SUS304	3) CNMG120408N-UP 4) AC3000, AC304	V = 90~110 f = 0.25 d = 2.5~3.5	Smoother cut and superior chip-control than conventional chip breakers		
		1) Seat Ring 2) SUS304	3) CNMG120408N-UP 4) AC3000, AC304	V = 100 f = 0.25 d = 4~5	Superior anti-notch wear and better chip control than conventional chip breakers		
Hastelloy	Derivative 1) Aerospace Parts 2) Nimonic 75 (Ni60%, Cr20%, Co, C, etc) 2) Nimonic 75 (Ni60%, Cr20%, Co, C, etc) Exotic Materials (Co20%, Cr20%, Ni47%)		3) CNMG120408N-UP 4) EH20Z	V = 45 f = 0.15 d = 0.25	Wear resistance and chip control is superior as compared to the competitor's		
Titanium Alloys	-	2) Titanium Alloy (Ti-6Al-4V)	3) SNMG120408N-UP 4) EH10Z EH20Z (K10 Coated Carbide)	V = 30 m/min f = 0.15 mm/rev d = 1.0 mm Wet (Water Soluble)			
Stellite	Stellite Stainless Steel	 Valve Combination of Hot Rolled Stainless Steel Strips (AISI) and stellite 	3) CNMG120408N-UG 4) EH10Z	V = 20~40 m/min f = 0.1 mm/rev d = 1~2 mm Dry	EH10Z: 5 pcs/corner Competitor's K10 Carbide: 2 pcs/corner (EH10Z grade gives a smoother cut and good surface finish on both stellite and stainless parts)		
P/M Sintered Alloys		1) Valve Seat 2) P/M Sintered Alloy	 Special Holder (Carbide Shank) BNX4 (CBN) 	V = 56 m/min f = 0.1 mm/rev d = 0.3 mm Wet	Tool Life of BNX4 is twice that of competitor's CBN grade		
Quench Hardened Steels		1) Crank Web Pin Hole 2) JIS S48C (HRC55~62)	3) SumiBoron Insert SPGN090312 4) BN250	V = 90 m/min f = 0.07 mm/rev d = 0.15 mm Wet	Tool Life: 400 pcs Surface Finish: 3~4 μm (Rmax) Diameter Compensation: 100 pcs each		
Inconel 718		1) Aircraft Part 2) Inconel 718	3) CNMG190612N-MU 4) EH10Z	V = 40 m/min f = 0.15 mm/rev d = 1.5 mm			
Carbide		1) Round bar 2) Carbide G6	3) SumiDia Insert SNGN120408 4) DA90 (PCD)	V = 10 m/min f = 0.065 mm/rev d = 0.05 mm Dry	Machining time per regrind is approx 20 minutes		

Milling

		Work Materials	Tools	Cutting Conditions	
	Tool Selection and Work Application (mm)	1) Part Name 2) Materials	3) Cutter Cat. No.4) Insert Cat. No. (Grade)	V = Cutting Speed f = feed/tooth d = Depth of Cut	Results
Stainless Steels	200	1)Machine Tool Parts 2)Casted Stainless Steel	3) UFO4160R 4) SFEN12T3AZTN (AC325)	V = 176 m/min N = 350 rpm F = 550 mm/min f = 0.2 mm/tooth d = 2 mm	Efficiency is 220% higher when compared to conventional cutters with 25° posi-inserts Very stable machining without chattering and chipping of the cutting edges.
Inconel	1,100 Surface to Be Cut	1)Thin Structural Work 2) Inconel 625	3) GRC6160R 4) RGEN2004SN (EH20) Competitor's Cutter: ø160 mm (Coated Inserts)	$V = 40{-}50 \text{ m/min}$ f = 0.2~0.3 mm/tooth d = 3~5 mm Competitor's Cutter V = 20 m/min f = 0.25 mm/tooth d = 5 mm	Our cutter performed for over 35 minutes Initially there were sparks and after 20 minutes, the competitor's inserts were totally broken.
	10 300	1) Plate 2) MONEL 400	3) UFO4100R 4) SFEN12T3AZTN (AC325)	V = 250 m/min N = 796 rpm F = 498 mm/min f = 0.125 mm/tooth d = 5 mm Wet	Using a cutter with 15° posi round-insert is difficult because the chips adhere to the cutting edge. As the rake angle of UFO is much higher and performance of chip exhaust is superior, they get 370% higher efficiency.
Titanium Alloys	Surface to Be Cut HRC 36~40	1) Block 2) Titanium-Alloy (Ti-6Al-4V)	3) GRC6160R 4) RGEN2004SN (EH20)	V = 30 m/min f = 0.2 mm/tooth d = 3~4 mm	Performed for over 40 minutes.
Titanium Alloys	-	1) 2) Ti-6Al-4V (HRC32~34)	3) UFO4160R 4) SFEN12T3AZTN (EH20Z)	V = 54 m/min N = 113 rpm F = 181 mm/min f = 0.2 mm/tooth d = 2.5 mm	As compared with G10E grade inserts, the Z-coated inserts provided 170% higher efficiency and 200% longer tool life.
Die Steels	05 50	1) Block 2) SKD11	3) UFO4063ER 4) SFKN12T3AZTN (AC325)	V = 200 m/min $N = 1010 rpm$ $F = 1000 mm/min$ $f = 0.2 mm/tooth$ $d = 0.8 mm$ $2 pass/area$	Even when machining the forged surface, the UFO cutter cuts smoothly and provides a good surface finish.
	AND	1) Forging Die Part 2) HAP72 (HrC40)	3) UFO4100R 4) SFEN12T3AZTN (A30N)	V = 182 m/min N = 580 rpm F = 305 mm/min f = 0.11 mm/tooth d = 3 mm	Machining was impossible using 15° or 20° posi-insert cutters but with UFO cutter, there wass no problem under these conditions.

Machinability of Hard to Cut Materials

< Machinability >

 Machinability Denotes

- Machinability and Machining of hard-to-cut Materials:
- 1) Less cutting tool failures and longer tool life 2) Smaller cutting resistance and power

consumption

cut-work material.

Workpiece

3) Satisfactory finishing of products

4) Satisfactory chip control

Machinability Index

- > An index designed in the U.S.A. in which machinability is expressed by taking notice of the tool life only.
- > Machinability is numerically shown and therefore it is used as the standard to determine suitability of cutting. The material becomes difficult to cut as the numeric value decreases. 45 and below is designated as hard-to

 Machinability Index Of **Typical Materials**

Wo	Workpiece Machinability Index		Workpiece		Machinability Index	Workpiece			Machinability Index
Copper Alloy		100 ~ 70	sse	Ferritic	65 ~ 50 55 ~ 40	ision oys	Fe	A-286	30 ~ 10
Steel	Mild Medium Hard	85 ~ 70 65 ~ 50 60 ~ 50	Austenitic	Base			Inconel 901		
				Austenitic	50 ~ 35	Corro ng Alk	Ni	Nimonic 80A	16 ~ 6
			Alloy Tool Steel		30 ~ 25	t and esisti	Base	Inconel 901	
Low Alloy Steel Cast Iron		65 ~ 50 70 ~ 50	High Maganese Steel Titanium Alloy		40 ~ 30 30 ~ 20	Heat Re	Cr Base	L-605 Stellite 21	15 ~ 6

< Problems Of Hard To Cut Materials & Remedies >

Assure fittings and protection from run-out and chatter.

Exotic Mat

Work Materials

Machining of Stainless Steel

3) Recommended Cutting Conditions TiAIN compounds coated on the carbide base material, having 3~5 times longer life than norma
 Conditions
 Cutting speed (V) = 30~70 m/min, Feedrate (f) = 0.015~0.05 mm/tooth.

Χ7

Cutting Quench-Hardened Steels

- < Quench-Hardened Steels & CBN >
- Features Of Quench Quench-hardened steels with martensite content are excessively hard and strong. Therefore, the cutting resistance, especially thrust force, is high Hardened Steels The conventional finishing process for hardened steels Machining Quench-Merits of conversion from grinding to cutting: has been dependent upon grinding but due to the Hardened Steels Reducing the cutting time. development of CBN tools which provide better • Reducing the cost of equipment. (New CBN tools replace; capabilities, more and more users are converting to Able to perform various operations. grinding with cutting) CBN for finishing of hardened steels Sintered CBN Sintered CBN is a new material for cutting tools which is composed (Sumiboron) mainly of cubic boron nitride and sintered at ultrahigh pressure and temperature SumiBoron is a sintered CBN tool developed by Sumitomo Material Hardness (Hv) Features Applications (Workpieces) High Wear Resistance & Fracture Hardened Steel: Continuous Light Interrupted Cut BN250 $3100 \sim 3300$ High Toughness & Chipping Hardened Steel: Medium Heavy Interrupted Cut BN300 $3300 \sim 3500$

High Toughness & Hot Hardness

Good Thermal Cracking Resistance & Toughnes

High Efficiency Cutting Hardened Steel & High Speed Cast Iron Turning

< Cutting Quench-Hardened Steels By CBN >

RNX20

BN600

 $3200 \sim 3400$

3900 ~ 4200

